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Abstract—The highly diastereoselective synthesis of fused oxopiperazino-b-lactams 2 by Staudinger reaction between functionalized
ketenes and 5,6-dihydropyrazin-2(1H)-ones 1 has been carried out. Further cleavage of the b-lactam ring produced 2-oxopiperazine-
3-acetic acid derivatives 7 with no epimerization and in good yields.
� 2006 Elsevier Ltd. All rights reserved.
The oxopiperazine ring is a well established conforma-
tionally constrained peptidomimetic, therefore, many
efforts have aimed to prepare these products with
stereocontrol.1 In particular, 2-oxopiperazine-3-acetic
acid methyl ester has been designed as cyclic template
bearing an aspartic acid side chain.2 Furthermore,
related compounds containing 2-oxopiperazine-3-acetic
acid subunits have shown activity as aspartate transcar-
bamoylase inhibitors, and as antagonists of the glyco-
protein IIb/IIIa useful for the treatment of thrombotic
diseases.3 Frequently, the enantioselective synthetic
approaches to 3-substituted 2-oxopiperazines rely on
natural aminoacids and are not fully useful for the
straightforward synthesis of highly substituted
derivatives.

b-Lactams continue to attract attention from chemists
due to their antibiotic properties; in addition, in recent
years the b-lactam skeleton has found broad applicabil-
ity as a synthon to prepare a wide range of molecules.4

The Staudinger reaction between imines and ketenes is
one of the most efficient methods to prepare enantiopure
2-azetidinones. In particular, most of the reports on the
synthesis of bicyclic b-lactams are focused on initial
[2+2] cycloaddition of acyclic imines and ketenes and
further cyclization of the groups pending of the b-
lactam.5 In contrast, reports focused on the diastereo-
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selective synthesis of enantiopure b-lactams from cyclic
imines are scarce and often limited to the use of enantio-
pure acid chlorides as the source of asymmetric
induction.6

Within a program focused on the discovery of bioactive
piperazines7 and in connection with our studies on the
development of efficient routes to highly substituted
enantiopure piperazines from sulfinimines,8 we exam-
ined the stereocontrolled addition of nucleophiles onto
5,6-dihydropyrazin-2(1H)-ones, A. A completely stereo-
selective and high-yielding allylation8b was achieved un-
der Barbier conditions (B) using CeCl3Æ7H2O as additive
and this would be a suitable route to an acetate group by
oxidation. Encouraged by these results and seeking an
alternative access to 2-oxopiperazine-3-acetic acid
derivatives, we submitted substrates A to the parallel
Reformastky procedure using methyl a-bromoacetate.
However, 5,6-dihydropyrazin-2(1H)-ones A were un-
reactive under these conditions and the addition of
preformed organozinc reagents such as 4-ethoxy-
4-oxobutylzinc bromide also resulted ineffective (Scheme
1). At this point, we planned an alternative strategy for
the synthesis of these compounds. We envisioned a new
approach by means of a diastereoselective Staudinger
reaction onto 5,6-dihydropyrazin-2(1H)-ones A, to
produce fused oxo-piperazino-b-lactams C that could
be suitable precursors to highly substituted enantiopure
piperazines.

Initially we examined the reaction between 1a and an
excess of phthalimidoacetyl chloride in the presence of
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triethylamine, in CH2Cl2 and at room temperature and
we found an excellent yield of b-lactam 2a as a single
diastereoisomer (Scheme 2, Table 1, entry 1).9 Under
Table 1. Synthesis of piperazino-b-lactams 2a–i produced via Scheme 2

Entry 1 Conditions 2 (Yield %)

1 1a PhthNCH2COCl (1.72 equiv),
NEt3 (4.8 equiv) CH2Cl2,
0 �C–rt, 15 h N

N

O

O

PhthN H

2 1a AcOCH2COCl (2.30 equiv),
NEt3 (6.4 equiv) CH2Cl2,
0 �C–rt, 28 h

N

N

O

O

AcO H

3 1a ClCH2COCl (1.72 equiv),
NEt3 (4.8 equiv) CH2Cl2,
0 �C–rt, 19 h

N

N

O

B

O

Cl H

4 1a Toluene, 80 �C, 4 h 30 min 2c (74%)

5 1a BnOCH2COCl (1.72 equiv),
NEt3 (4.8 equiv) CH2Cl2,
0 �C–rt, 18 h

N

N

O

O

BnO H

6 1a Toluene, 40–80 �C, 4 h 2d (60%)
7 1a Toluene, 80 �C, 1 h 2d (82:12, 80%)
similar reaction conditions, a good yield of acetoxy b-
lactam 2b (entry 2) was obtained, however other acetyl
chlorides (benzyloxy-, chloro-, and 2,5-dimethoxy-
phenyl-, entries 3, 5, and 8) did not render a complete
[2+2] cycloaddition yielding substantial amounts of
monocyclic intermediates 3c–e, each of them as a single
isomer and generated by addition of water to the acyl-
iminium intermediates during the aqueous work-up.10

To improve the yields of b-lactams, we changed the
reaction conditions to toluene at 80 �C and good yields
of chloro- and 2,5-dimethoxyphenyl b-lactams 2c and 2e
were obtained while maintaining complete diastereo-
selectivity (entries 4 and 9). Upon these conditions,
benzyloxyacetyl chloride led to an 82:12 mixture of
diastereoisomeric b-lactams (80%) along with 14% of
3d which incorporates two molecules of the starting acid
chloride. A decrease in the reaction temperature allowed
for the synthesis of 2d as a single diastereomer but again
27% of 3d was isolated in this experiment (entries 6 and
7). To extend the scope of this procedure, we examined
the behavior of 5,6-dihydropyrazin-2(1H)-one 1b, with
the imine flanked by an aromatic group (R1 = 1-naph-
thyl). Entries 12–14 show that 1b underwent a highly
diastereoselective Staudinger reaction providing b-lac-
tams 2g–i in good yield under these conditions.11 Efforts
to prepare 3,3-disubstituted b-lactams and 3-alkyl/vinyl
3 (Yield %)
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Table 1 (continued)

Entry 1 Conditions 2 (Yield %) 3 (Yield %)

8 1a

2,5-(CH3O)2-C6H3CH2COCl
(1.72 equiv),
NEt3 (4.8 equiv) CH2Cl2,
0 �C–rt–D, 51 h

N

N

O

OTBDMS

Bn

O

H
2e (31%)MeO

OMe

N

N

O

OTBDMS

Bn

O

HO
3e (54%)

MeO

OMe

9 1a Toluene, 80 �C, 1 h 15 min 2e (74%) —

10 1a Cl2CHCOCl (2.0 equiv),
NEt3 (4.0 equiv) toluene, rt, 1 h N

N
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12 1b PhthNCH2COCl (1.72 equiv),
NEt3 (4.8 equiv) toluene,
80 �C, 19 h
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13 1b AcOCH2COCl (1.72 equiv),
NEt3 (4.8 equiv) CH2Cl2,
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b-lactams were unsuccessful under thermodynamic and
kinetic conditions. When i-butyryl chloride, n-butyryl
chloride and 3-methylbut-2-enoyl chloride were used
as ketene precursors, complex mixtures of N-acylated
compounds were isolated. In contrast, the reaction of
1a with dichloroacetyl chloride in toluene at room tem-
perature led to N-acylated derivative 3f (75%), along
with a trace amount of b-lactam 2f (4%). Increasing
the temperature led to the isolation of 3f 0 (80%) with loss
of the silyl protecting group (entries 10 and 11).12

The structural assignment of the bicyclic b-lactams 2a–i
was based on spectroscopic data (Scheme 3). The trans
relative stereochemistry was easily determined by the
small coupling constant between H-3 and H-6 ranging
from 1.9 to 2.6 Hz. The absolute configuration was
established by 2D-NOESY experiments which showed
cross points between H-6 and protons of R1.13 The trans
stereochemical outcome could be rationalized in terms
of an exo approach, which places the electrodonating
ketene substituent (R2) outward without further isomer-
ization of the imine. With respect to the diastereofacial
selectivity, the pseudo axial arrangement of R1 probably
blocks the b-face of the iminium intermediate and there-
fore cyclization takes place by the less hindered convex
face.14

In addition, we examined the reactivity of oxopiperaz-
ino-b-lactams 2 (Scheme 4). Thus, 2d underwent smooth
hydrogenation when EtOAc was used as a solvent ren-
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dering a-hydroxy-b-lactam 4 in 75% yield. The use of
nucleophilic solvents as methanol should be avoided
due to the lability of these bicyclic b-lactams. We have
also explored the behavior of these b-lactams under
reductive conditions. The treatment of 2e with
BH3ÆSMe2 in THF under reflux gave rise to a mixture
of the bicyclic azetidine 5 (39%) and piperazinyl ethanol
6 (37%). Finally, treatment of 2a and 2i with trimethyl-
chlorosilane in methanol smoothly produced the
cleavage of the b-lactam ring with simultaneous depro-
tection of the hydroxymethyl group to give 2-oxopiper-
azine-3-acetic acid methyl esters 7a and 7i in good
yields.15

In conclusion, we have developed a general method to
prepare fused oxopiperazino-b-lactams 2 by reaction
between functionalized ketenes and 5,6-dihydropyr-
azin-2(1H)-ones 1 in excellent yields and with complete
stereocontrol induced by the piperazine system. Subse-
quent methanolysis of the four-membered ring produces
enantiopure 2-oxopiperazine-3-acetic acid methyl esters
7 in good yields.
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